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Abstract

Firstly test the model using the IUCF 1998 experiment data. Expand

the model after consider the AGS realistic case.

1 Test of the model

1.1 Resonance from the Exp.

This idea comes from an article : Spin Flipping in the Presence of a Full Siberian

Snake PRL Oct.5 1998. Using an rf solenoid magnet to induce the depolarizing
resonance while keeping the spin tune constant, the frequency fr is given by

fr = fc(k ± νs) (1)

Here fc is the revolution frequency, and k is an integer. Slowly sweeping the rf
magnet’s frequency through fr can flip the spin. The Froissart-Stora equation
gives the ratio of the final polarization Pf and the initial polarization Pi :

Pf = Pi(2e

−(πW )2

4
∆f
∆t − 1) (2)

W is the resonance width in Hz, and ∆f
∆t

is the resonance crossing rate, where
∆f is the frequency range during the ram time ∆t. Compared to the original
Froissart-Stora equation which is expressed by the resonance strength ε :

Pf = Pi(2e
−π|ε|2

2α − 1) (3)

Here ε is the resonance strength and α is the resonance crossing rate. There
is a correlation between the W and ε. Therefore, the resonance strength can
be gotten from the experiment data. Below is the deduce from equation (3) to
equation (4).
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Therefore, the resonance strength can be calculated from the resonance width
and revolution frequency :

|ε| =
W

2fc

(4)

α =

∆f
fc

∆θ
(5)

The experiment result shows the resonance strength is ε 0.000206. At the
same time, the rf solenoid’s amplitude was set at 6kV corresponding to an
∫

B.dl = 1.6T . Then the resonance strength ε also can be given by (“Comment

on ...” by M.Bai et. PRST 8,09001 2005 ) :

|ε| =
φ

2π
=

1 + G

4π

BoscL

Bρ
(6)

The resonance coming from this calculation is ε 0.000245, which agrees with
that from the experiment data. Next, I will substitute this resonance strength
into the model and compare the calculated polarization to the experiment one.
If they agree to each other, it proves the model is correct.

1.2 Testing

This model comes from the book : Spin Dynamics and Snakes in Synchrotrons,

S.Y.Lee. The average polarization around a resonance region is given by:

Pf = Pi

|K − Gγ|
√

(K − Gγ)2 + |ε|2
(7)

where K is the resonance position, Gγ is the spin tune and |ε| is the resonance
strength. From this equation, it shows that |ε| plays the role of the resonance
width. At a distance Gγ − K = ±|ε| away from resonance, polarization is
reduced by a factor of 1√

2
. In IUCF 1998 experiment, they kept the Gγ constant

while changed the resonance position K by the rf solenoid. Table1 shows the
resonance position and measured polarization correspondingly. Substitute the
resonance position into the model and select the resonance strength ε 0.000245,
the calculated polarization is also shown on the table1. Fig1 gives the plot.
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Figure 1: Black circles are the experiment data with the error bar, red ones are
from the model using the resonance strength given by the experiment.

1.3 Conclusion

The plot shows the model and the experiment data do not agree well. The later
application is based on the model with much more care about the realistic beam
status.

2 Application on the experiments

In AGS 2005 Run, we did the B-field scan,which changed the spin tune Gγ

instead of resonance position K. Use this model directly to fit the experiment
data, it shows a big resonance strength from the width, which couldn’t be. Here
I give one of plots that shows B-field scan at Gγ = 38 + νv. Fig2 includes both
the experiment data and the result from the model directly with different given
resonance strength. They show the resonance strength can get to the order of
10−1, which is not reasonable for the real case. However, the experiment data
does show such wide width, therefore, there must be some other reasons that
cause the width wider. Consider the real beam distribution and tune spread,
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Figure 2: Black circles are the experiment data with the error bar, different
colors for different resonance strength

the model can be modified as below:

Pf = Pi

∫ ∞
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∫ ∞

0

|K − Gγ|
√

(K − Gγ)2 + ε20
I
I0

1

2I0
e
− I

2I0
1√
2πσ

e−
(K−K0)2

2σ2 dIdK

= Pi

∫ ∞

−∞

∫ ∞

0

|(K0 + xt) − Gγ|
√

((K0 + xt) − Gγ)2 + ε20
I
I0

1

2I0
e
− I

2I0
1√
2πσ

e−
x2

t
2σ2 dIdxt

= Pi

∫ ∞

−∞

√

π

2

|(K0 + xt) − Gγ|
ε0

e
((K0+xt)−Gγ)2

2ε2
0 (1 − Erf [

|(K0 + xt) − Gγ|√
2ε0

])

1√
2πσ

e−
x2

t
2σ2 dxt (8)

where I0 is the rms emittance of the beam,σ is the rms tune spread,K0

is the ideal resonance location. This equation includes two integration. The
integration from 0 to ∞ means the beam has a Gaussian distribution, which
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can be gotten analytically. while the other one coming from the tune spread
can not be. Leaving the second integration alone, The current work is trying
to fit the experiment data using the above equation (8) numerically. In order
to make the work much easier, some approximation was done, which is shown
below.

For error function, it has the Rational Approximation (0 ≤ z < ∞)

Erf(z) = 1 − (a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5)e−z2

+ O(z) (9)

Here

t =
1

1 + pz

|O(z)| ≤ 1.5× 10−7

(10)

and
a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741 (11)

a4 = −1.453152027, a5 = 1.061405429, p = 0.3275911 (12)

Here z = |(K0+xt)−Gγ|√
2ε0

. Because we alway have 0 ≤ |(K0+xt)−Gγ|√
2ε0

< ∞,

the error function in equation (2) can be expanded by the equation (3). Then
equation (2) becomes :

Pf = Pi
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which has :

t =
1

1 + p
|(K0+xt)−Gγ|√

2ε0

Theoretically,there are four parameters to be needed for fitting : Pi,K0,σ,ε
if we want get the best fitting result. There is something strange when I did

5



it. For each different initialization, the fitted parameters are different totally.
To simply the problem, I did the σ scan by setting Pi = −52.4,K0 = 46.71,
which is shown in Fig3. For every χ2 minimum output, the resonance strength
is approximately 0.08 with a little bit width expansion. In order to make clear
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Figure 3: rms tune spread scan

that tune spread will widen the resonance strength, I also give the plot showing
that phnomena in Fig4.
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Figure 4: Black color shows no tune spread, and rea one shows with rms tune
spread 0.021. Both of them have the same resonance strength
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